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Abstract. In developing methods for convective-scale data assimilation (DA) it is necessary to consider the full range of

motions governed by the compressible Navier-Stokes equations (including non-hydrostatic and ageostrophic flow). These

equations describe motion on a wide range of time-scales with non-linear coupling. For the purpose of developing new DA

techniques that suit the convective-scale problem it is helpful to use so-called ‘toy models’ that are easy to run, and contain the

same types of motion as the full equation set. Such a model needs to permit hydrostatic and geostrophic balance at the large-5

scales, but to allow imbalance at the small-scale, and in particular, they need to exhibit intermittent convection-like behaviour.

Existing ‘toy models’ are not always sufficient for investigating these issues.

A simplified system of intermediate complexity derived from the Euler equations is presented, which support dispersive

gravity and acoustic modes. In this system the separation of time scales can be greatly reduced by changing the physical

parameters. Unlike in existing models, this allows the acoustic modes to be treated explicitly, and hence inexpensively. In10

addition, the non-linear coupling induced by the equation of state is simplified. This means that the gravity and acoustic modes

are less coupled than in conventional models. A vertical slice formulation is used which contains only dry dynamics. The

model is shown to give physically reasonabe results, and convective behaviour is generated by localised compressible effects.

This model provides an affordable and flexible framework within which some of the complex issues of convective-scale DA

can later be investigated. The model is called the “ABC model” after the three tunable parameters introduced: A (the gravity15

wave frequency), B (the modulation of the divergent term in the continuity equation), and C (defining the compressibility).

1 Introduction

Advances in computer power have enabled Numerical Weather Prediction (NWP) models to operate at higher resolutions than

has previously been possible. In 2009 the Meteorological Office (Met Office) upgraded the resolution of its Unified Model

(UM, Davies et al. (2005)) for the UK domain from 12 km to 1.5 km (Dixon et al., 2009). Resolutions of this degree are20

expected to resolve the large and synoptic scale features well. Bryan et al. (2003) found that models with resolutions of

100m are necessary to provide meaningful simulations of convection. Resolutions ofO(100m) are not yet affordable over the

UK domain with current computer resources, although research experiments with the UM over smaller domains with 200 m
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resolution have shown marked benefit (Lean et al., 2008). Models of O(. 1 km) resolution are known as convective-scale

models because they are capable of resolving some convection explicitly, thus do not require a full convection scheme. For

instance it is possible to explicitly represent features such as thunderstorms O(10 km) and Mesoscale Convective Systems

(MCSs) O(10-100 km), though not necessarily resolve their internal structure (e.g. Bryan et al. (2003); Clark et al. (2005);

Lean et al. (2008)). Convective-scale forecasting can facilitate more accurate and earlier indications of extreme or hazardous5

weather, e.g. severe convection (Lean et al., 2008), which is of clear benefit.

As NWP moves towards the convective-scale so it is appropriate to examine the data assimilation (DA) scheme underpinning

the forecast. The DA process combines meteorological data from a variety of sources including satellites, radar, weather sta-

tions, and radiosondes with a previous forecast (a background state) to produce an analysis. The NWP model is then integrated

forward from the analysed state. The DA scheme that combines the observed and background data should provide an analysis10

that is approximately consistent with the observations and the model. The development of our toy model is a step towards a

detailed and technical investigation of the convective-scale DA problem though its utility is not limited to this application.

Convective-scale DA introduces new issues. The errors in the larger-scale flow are still present, but in addition there will be

errors on the small scales resolved by the convective-scale model which will have a different correlation structure. A pragmatic

solution is to rely on a larger scale DA system to correct the large-scale errors, and thus allow convective-scale DA to focus on15

small scales. The model introduced in this paper is intended to allow development of methods of assimilating information over

all scales. Detailed reviews of the issues are given by Park and Županski (2003); Dance (2004); Sun (2005); Lorenc and Payne

(2007).

The current Met Office operational large-scale DA scheme enforces hydrostatic balance as a strong constraint and exploits

geostrophy as a weak constraint in the background error covariance model (Lorenc et al., 2000; Bannister, 2008). The use of20

the hydrostatic balance relationship is valid for flows where the aspect ratio is much less than one, e.g. Holton (2004); Vallis

(2006). In regions of convection the aspect ratio increases and so hydrostatic balance may no longer be a good approximation.

Vetra-Carvalho et al. (2012) demonstrated that hydrostatic balance breaks down in the UM when it is run at 1.5 km horizontal

resolution in regions of convection. At mid and high latitudes the geostrophic assumption is accurate for large-scale flows

where the Rossby number is small (e.g. Holton (2004)). At the convective-scale the Rossby number is not small and therefore25

the use of geostrophic balance is no longer appropriate. It is therefore important that these balances are relaxed in convective-

scale DA. Some variational DA methods, such as those termed “EnsVar” (Lorenc, 2013; Liu and Xue, 2016; Bannister, 2017)

use information from an ensemble to represent background error covariance information without, in principle, the need to

impose balances via a prescribed background error covariance matrix. These methods though suffer from noise in the sampled

error covariance matrix and so rely on fixes such as localisation, which is known to destroy balances when they are relevant30

(Kepert, 2009; Bannister, 2015). The sampled (and localised) error covariance matrix in these methods is often hybridised with

a prescribed background error covariance matrix (Clayton et al., 2013), which does impose balances. This brings attention back

to the validity of such balances when such methods are applied at convective-scales, and hence to simplified systems where

this issue can be studied closely.
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Operational systems have to resolve features at both the synoptic and the convective-scales, requiring a large number of

grid points. Such systems are very expensive to run and are not ideal tools for research purposes. The wide range of time-

scales means that semi-implicit integration schemes are required for efficiency, e.g. Davies et al. (2005), and the nonlinear

coupling between acoustic and gravity waves through the equation of state makes analysing the small-scale behaviour difficult,

(Thuburn et al., 2002). Thus it would be useful to have a simplified model which describes a variety of regimes but without5

the extreme separation of time-scales and the full nonlinear coupling between acoustic and gravity waves present in the real

system. A simplified system that has these properties allows problems such as the convective-scale DA problem to be explored

in a practical but physically realistic way.

Perhaps the simplest non-linear model of convection is the well-known Lorenz 63 system (Lorenz, 1963), which describes

convection with only three variables. These are (respectively) proportional to the strength of the convective motion, the size of10

the temperature differences between the up- and down-welling air, and the degree of deviation from linearity of the temperature

profile. The resulting three ordinary differential equations are easily integrated numerically, but they miss the representation

of the complex spatial aspects of the problem required to mirror real forecasting problems. Würsch and Craig (2014) discuss

the lack of availability of suitable simplified models of convection for DA research, and they note that people have tended to

run full NWP models for this purpose, but in idealised settings (see references in Würsch and Craig (2014) for examples).15

These models however remain complicated and expensive to run. Würsch and Craig (2014) developed a simplified model

for purposes of convective-scale DA research. Their model is based on the one-dimensional shallow water model, modified

to account for the phase transitions of cloud formation and precipitation – essential processes in the formation of cumulus

convection. Although their model has shown to be very useful for this purpose, its one-dimensionality makes it impossible to

tackle questions relating to the breakdown of hydrostatic balance, and to simulate our inability in practical situations to resolve20

vertical structures from observations.

The simplified system derived in this paper is intended to be run in vertical slice geometry (longitude/height), so that many

fewer degrees of freedom are needed than in an operational three-dimensional system. The equations are modified so that the

speed of the acoustic and gravity waves can be controlled, and so the normally large separations in time-scales can be reduced.

The equation of state is also modified so that the degree of coupling between the acoustic and gravity waves is reduced. The25

modifications are designed so that energy is conserved in the equations, which is necessary for realistic behaviour. In order

to study the dynamically-related breakdown of balance, no moisture is included, but intermittent convection-like behaviour is

still seen (e.g. via gravity wave breaking). These simplifications permit large-scale balanced flows and sporadic small-scale

non-hydrostatic flows (i.e. convection) to coexist within the framework of a simplified and practical model.

Section 2 provides a derivation of the toy model equations which are analysed in terms of a scale analysis and energy30

conservation properties. Section 3 describes the numerical implementation of the model. Section 4 provides a linear analysis of

the equations. Section 5 shows the results of an idealized integration which illustrates how the model can be used to simulate

different flow regimes. Section 6 provides a summary and some concluding remarks. Future work will exploit this model in

testing different approaches to convective-scale DA, as piloted in Petrie (2012).
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2 Derivation of the model equations

The model is derived from the compressible 3-D Euler equations (1), see e.g. Holton (2004); Pielke (2001); Vallis (2006):

∂u
∂t

+ u · ∇u +
1
ρ
∇p+ gk + fk×u = 0, (1a)

∂ρ

∂t
+∇ · (ρu) = 0, (1b)

∂θ

∂t
+ u · ∇θ = 0, (1c)5

p= ρR

(
p

p00

)κ
θ. (1d)

Equations (1a) are the momentum equations, where t is time, u = (u,v,w) comprises zonal (u), meridional (v) and vertical

(w) components, p is pressure, g is the acceleration due to gravity and ρ is density. The f -plane assumption is made and k is the

vertical unit vector. Equation (1b) is the compressible mass continuity equation. Equation (1c) is the adiabatic thermodynamic

equation where θ is potential temperature. Equation (1d) is the equation of state where p00 = 1000hPa, κ=R/cp is a constant,10

with cp the specific heat capacity at constant pressure and R the gas constant for dry air.

From this set of equations we wish to construct a toy model that has large-scale geostrophically and hydrostatically balanced

flow, permits intermittent convective-like behaviour and is of practical use for investigating issues that arise in the convective-

scale DA problem (e.g. that it is cheap to integrate).

2.1 Modifications to the 3-D Euler equations15

In order to derive a model with the properties outlined above Eqs. (1) are modified in two stages. Firstly, a set of physically

based approximations are made and secondly a set of ‘toy model’ simplifications are made. The latter set does not attempt

to replicate the real system, rather they are intended to retain desired physical characteristics of the real system but simplify

the computational implementation. In order to simplify the system it will be assumed that the model is periodic in the zonal

direction and homogeneous in the meridional direction (i.e. the variables are functions of longitude, height, and time only).20

2.1.1 Physically based modifications

The variables are decomposed such that they have a basic state and perturbation component as in e.g. Pielke (2001):

Φ(x,z, t) = Φ0(z) + Φ′(x,z, t). (2)

Here Φ applies to any model variable except θ (for θ see below). The basic state (subscript 0) is a function of height only, and

the perturbation (primed) is a function of longitude (x), height (z), and time (t). Potential temperature contains also a constant25

reference value (subscript R):

θ(x,z, t) = θR + θ0(z) + θ′(x,z, t). (3)
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The wind components u, v and w have zero reference state values, therefore the prime notation is dropped for the winds. For

convenience, explicit reference to the arguments x and z will be dropped in much of the following derivation.

The basic state is assumed to satisfy hydrostatic balance

∂p0

∂z
=−ρ0g, (4)

and the equation of state is5

p0 = ρ0R

(
p0

p00

)κ
(θR + θ0). (5)

The Brunt-Väisälä frequency, N , is defined as

N2 =
g

θR

dθ0

dz
. (6)

The pressure gradient terms in Eq. (1a) are represented with Eq. (2), products of perturbations are neglected, and it is assumed

that ρ0� ρ′ in the momentum equations. A buoyancy variable, b= b0(z)+b′(x,z), is introduced for convenience, it is related10

to θ by

b= b0(z) + b′ =
g

θR
(θR + θ0(z) + θ′) . (7)

Combining these physically based approximations gives the following equations:

∂u

∂t
+ u · ∇u+

1
ρ0

∂p′

∂x
− fv = 0, (8a)

∂v

∂t
+ u · ∇v+ fu= 0, (8b)15

∂w

∂t
+ u · ∇w+

1
ρ0

∂p′

∂z
+
g

ρ0
ρ′ = 0, (8c)

∂ρ′

∂t
+∇ · (ρu) = 0, (8d)

∂b′

∂t
+ u · ∇b′+N2w = 0, (8e)

p= ρR

(
p

p00

)κ
θ, (8f)

b′ =
g

θR
θ′. (8g)20

2.1.2 The “ABC model” modifications

It is desirable to reduce the stiffness of system Eqs. (8) so that it can be integrated explicitly with a time-step that is not too

small. The following ‘toy model’ modifications are made so that the toy equations retain the basic properties desired, i.e.

be geostrophically and hydrostatically balanced on the large-scale but permit intermittent convection-like behaviour on the

small-scale that is unbalanced. The modifications are as follows.25
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1. We control the gravity waves by replacing N by the tunable parameter, A (which has units of s−1). This is the pure

gravity wave frequency (Sect. 4.3).

2. We control the acoustic waves by multiplying the divergent term of the compressible continuity equation by the dimen-

sionless parameter B (where 0<B ≤ 1). To ensure energy conservation (Sect. 2.3) it is required that B also multiplies

the advective components of the momentum and thermodynamic equations. Acoustic waves can have frequencies that5

are normally much higher than gravity waves, but choosing a small B can help to reduce the acoustic wave frequencies.

The effect of these parameters on the wavespeeds will be demonstrated by numerical linear analysis in Sect. 4.5. The acoustic

and gravity waves in the real atmosphere are coupled through the equation of state (Thuburn et al., 2002). This coupling can

be reduced by using a linearized and simplified equation of state. Linearizing Eq. (8f) about the basic state gives

(1−κ)p−κ0 p′ =
ρ′RθR

pκ00

+
ρ0Rθ

′

pκ00

, (9)10

where we have used θR + θ0 ≈ θR. This is used in two ways to give modifications 3 and 4 below.

3. Firstly, for the purpose of relating density and buoyancy perturbations in Eq. (8c), we neglect pressure perturbations in

Eq. (9):

ρ′

ρ0
=− θ

′

θR
, (10)

which by Eq. (8g) equals −b′/g.15

4. Secondly and separately, for the purposes of simplifying the equation of state, neglecting buoyancy perturbations in the

linearised equation of state Eq. (9) gives

(1−κ)p−κ0 p′ =
ρ′RθR

pκ00

. (11)

This is a means of decoupling gravity and acoustic waves. Further, setting

C =
RθRp

κ
0

pκ00(1−κ)
, (12)20

gives the simplified equation of state

p′ = Cρ′, (13)

where C is taken to be a global constant, and has units of Nmkg−1 = m2s−2. The quantity
√
BC is the pure sound wave

speed in this system (Sect. 4.4).

5. Reference density ρ0 is taken to be a constant and not a function of height.25

6. Define the scaled density perturbation, ρ̃′ as

ρ̃′ =
ρ′

ρ0
, (14)

and with this definition, ρ̃0 = 1.
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Combining modifications 1 to 6 gives the final form of the toy model equations:

∂u

∂t
+Bu · ∇u+C

∂ρ̃′

∂x
− fv = 0, (15a)

∂v

∂t
+Bu · ∇v+ fu= 0, (15b)

∂w

∂t
+Bu · ∇w+C

∂ρ̃′

∂z
− b′ = 0, (15c)

∂ρ̃′

∂t
+B∇ · (ρ̃u) = 0, (15d)5

∂b′

∂t
+Bu · ∇b′+A2w = 0. (15e)

Note that Eq. (15d) conserves mass following the flow modulated byB, i.e.Bu, but total mass remains conserved (Sect. 2.3.1).

We also include the following tracer transport equation for diagnostic purposes:

∂q

∂t
+ u · ∇q = 0, (16)

where q is the tracer concentration. Note that the advection term is not multiplied by B in Eq. (16) (as B will be generally10

chosen as B ≤ 1, we allow advection of the tracer to have its full effect so that tracer transport can be seen over an integration

of a few hours). We refer to these simplified equations as the “ABC model” reflecting the three tunable parameters.

2.2 Scale analysis of the “ABC” model

A scale analysis of Eqs. (15) is performed by non-dimensionalising the equations using characteristic values. Our scale analysis

deviates from standard analyses in two ways: (i) we allow different characteristic length-scales for each variable (in the hori-15

zontal and vertical), and (ii) we do not assume incompressibility (see below for more explanation of this). For the characteristic

values we set u= Uu∗, v = Vv∗, w =Ww∗, ρ̃′ = P ′ρ̃′∗, ρ̃∼ 1, and b′ = Bb′∗. For the characteristic horizontal length-scales

we set (respectively for each variable) x= LH
ux
∗
u, x= LH

v x
∗
v , x= LH

wx
∗
w, x= LH

ρ̃′x∗ρ̃′ and x= LH
b′x
∗
b′ , and for the vertical

length-scales z = LV
u z
∗
u, z = LV

v z
∗
v , z = LV

wz
∗
w, z = LV

ρ̃′z∗ρ̃′ and z = LV
b′z
∗
b′ . The timescale is set as t=

[
LH
u /(BU)

]
t∗. Upper

case calligraphic variables (except L) are characteristic values, starred variables are non-dimensional and O(1), and LH/V
p20

represents the horizontal/vertical length-scale of variable p.

Often in scale analyses the characteristic vertical speed,W , is written in terms of other characteristic variables by using the

incompressible continuity equation in a 2-D (longitude-height) system ∂u/∂x+∂w/∂z = 0. Scaling this givesW ∼ULV
w/LH

u .

We do not use this relation as some of the flows considered are highly compressible.

Using these definitions in Eqs. (15) and introducing the Rossby number, Ro= U/fLH
u , the aspect ratio, A= LV

u /LH
u ,25

the vertical-to-zonal wind ratio, WU =W/U , and the meridional-to-zonal wind ratio, VU = V/U gives the following non-
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dimensionalised equations:

BRo

[
∂u∗

∂t∗
+u∗

∂u∗

∂x∗u
+A−1WUw∗

∂u∗

∂z∗u

]
+

CP ′
UfLH

ρ̃′

∂ρ̃′∗

∂x∗ρ̃′
−VUv∗ = 0, (17a)

BRo

[
∂v∗

∂t∗
+
LH
u

LH
v

u∗
∂v∗

∂x∗v
+
LH
u

LV
v

WUw∗
∂v∗

∂z∗v

]
+V−1
U u∗ = 0, (17b)

BRo

[
∂w∗

∂t∗
+
LH
u

LH
w

∂w∗

∂x∗w
+
LH
u

LV
w

WUw∗
∂w∗

∂z∗w

]
+

CP ′
WfLV

ρ̃′

∂ρ̃′∗

∂z∗ρ̃′
− B

′

Wf
b′∗ = 0, (17c)

∂ρ̃′∗

∂t∗
+
∂ρ̃∗u∗

∂x∗u
+
LH
u

LV
w

WU
∂ρ̃∗w∗

∂z∗w
= 0, (17d)5

BRo

[
∂b′∗

∂t∗
+
LH
u

LH
b′
u∗
∂b′∗

∂x∗b′
+
LH
u

LV
b′
WUw∗

∂b′∗

∂z∗b′

]
+
A2W
B′f w∗ = 0. (17e)

When the first three terms of Eq. (17a) and Eq. (17b) are small (often achieved with small Ro) the geostrophic relationships

emerge. Expressed back in terms of the dimensional variables they are

−fv+C
∂ρ̃′

∂x
= 0, (18a)

u = 0. (18b)10

Under similar circumstances Eq. (17c) defines the hydrostatic relationship. Expressed back in terms of the dimensional vari-

ables it is

−b′+C
∂ρ̃′

∂z
= 0. (19)

2.3 Conservation of mass and energy

As the toy model equations (15) are no longer based on standard thermodynamics, we must demonstrate that they form a15

physically reasonable set. To this end we now show that they conserve mass and energy.

2.3.1 Conservation of mass

Multiplying the continuity equation, Eq. (15d), by the constant ρ0 gives the equation for the evolution of density perturbations.

Adding the zero valued term ∂ρ0/∂t then produces the equation for the evolution of density: ∂ρ/∂t+B∇ · (ρu) = 0. Since

the model uses periodic boundary conditions zonally, and zero vertical wind conditions at the top and bottom boundaries (Sect.20

3.2), the divergence theorem shows that the equations conserve mass,
∫ ∫

dxdz(∂ρ/∂t) = 0.

2.3.2 A useful ‘identity’ used to demonstrate conservation of energy

Dividing the continuity equation shown in Sect. 2.3.1 by ρ0 gives the equation for ρ̃ evolution: ∂ρ̃/∂t+B∇· (ρ̃u) = 0. Using

this equation and expanding ∂(ρ̃γ)/∂t+B∇ · (ρ̃γu), for an arbitrary time and space varying scalar field γ, we find:

∂(ρ̃γ)
∂t

+B∇ · (ρ̃γu) = ρ̃

(
∂γ

∂t
+Bu · ∇γ

)
. (20)25

Equation (20) is treated as an identity in the forthcoming energy analysis.
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2.3.3 Kinetic energy

Multiplying respectively the momentum equations, (15a) to (15c), by ρ̃u, ρ̃v and ρ̃w and using (20) with γ = u2/2, γ = v2/2

and γ = w2/2 we find:

∂

∂t

(
1
2
ρ̃u2

)
+B∇ ·

(
1
2
ρ̃u2u

)
+Cρ̃u

∂ρ̃′

∂x
− ρ̃ufv = 0, (21a)

∂

∂t

(
1
2
ρ̃v2

)
+B∇ ·

(
1
2
ρ̃v2u

)
+ ρ̃vfu= 0, (21b)5

∂

∂t

(
1
2
ρ̃w2

)
+B∇ ·

(
1
2
ρ̃w2u

)
+Cρ̃w

∂ρ̃′

∂z
− ρ̃wb′ = 0. (21c)

We can write the perturbation kinetic energy, Ek, as

Ek =
ρ̃

2
(
u2 + v2 +w2

)
, (22)

which allows the sum of Eq. (21a) to Eq. (21c) to be written

∂

∂t
Ek +B∇ · (Eku)− ρ̃b′w+Cρ̃u · ∇ρ̃′ = 0. (23)10

2.3.4 Buoyant energy

Multiplying the thermodynamic equation (15e) by ρ̃b′/A2 and using Eq. (20) with γ = b′2/(2A2), we find

∂

∂t
Eb +B∇ · (Ebu) + ρ̃b′w = 0, (24)

where the perturbation buoyant energy, Eb, is

Eb =
ρ̃b′2

2A2
. (25)15

2.3.5 Elastic energy

Multiplying the continuity equation (15d) by Cρ̃′/B we find

∂

∂t
Ee +Cρ̃′∇ · (ρ̃u) = 0, (26)

where the perturbation elastic energy, Ee, is

Ee =
Cp̃′2

2B
. (27)20

2.3.6 Total combined energy and its conservation

Adding Eqs. (23), (24), and (26) shows that the combined energy, E = Ek +Eb +Ee, satisfies

∂E

∂t
+B∇ · ((Ek +Eb)u) +C∇ · (ρ̃′ρ̃u) = 0. (28)

9
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Figure 1. The arrangement of variables on the toy model’s grid: an Arakawa-C grid in the horizontal and a Charney-Phillips grid in the

vertical. Note the abbreviations: FL=Full Level and HL=Half Level.

Integrating Eq. (28) over the whole domain for the total combined energy gives
∫
∂E

∂t
dV +

∫
B∇ · ((Ek +Eb)u)dV +C

∫
∇ · (ρ̃′ρ̃u)dV = 0. (29)

This toy model is set-up to have periodic boundary conditions in the x-direction, to have no variation in the y-direction, and to

have zero vertical wind at the top and bottom boundaries (see Section 3.2). The divergence theorem then leads to conservation

of total combined energy:5

∂

∂t

(∫
EdV

)
= 0. (30)

3 Numerical implementation of the “ABC model”

Now that a physically reasonable set of toy model equations has been formed, we now provide the details of how they are

treated numerically.

3.1 Model discretization10

The toy model uses a similar grid to that of the Southern UK (SUK) version of the UK Met Office’s Unified Model (UM), but

with some differences given below. In the horizontal the SUK model covers a domain of 540 km in longitude and 432 km in

latitude with a resolution of 1.5 km on an Arakawa-C grid. In the vertical it has 70 vertical levels up to approximately 40 km

on an irregularly spaced Charney-Philips grid (Lean et al., 2008).

The toy model grid is shown in Fig. 1. The differences from the SUK are that the toy model is periodic in the zonal direction,15

is homogeneous in the meridional direction, and uses regularly spaced vertical levels up to a lid of about 15km. The toy model

uses only 60 levels (level spacing δz ≈ 250 m) and has flat orography.

10
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Table 1. Upper and lower boundary conditions of each prognostic model variable, z0 is the the lower boundary and zt is the upper boundary.

Lower Upper

u u(z0) = 0 ∂u(zt)
∂z

= 0

v v(z0) = 0 ∂v(zt)
∂z

= 0

w w(z0) = 0 w(zt) = 0

ρ̃′ ∂ρ̃′(z0)
∂z

= 0 ∂ρ̃′(zt)
∂z

= 0

b′ b′(z0) = 0 b′(zt) = 0

This grid is a natural discretization of the equations which does not require a significant number of interpolations. There are

approximately 105 variables in the state space of the toy system.

3.2 Boundary conditions

The vertical boundary conditions that we use are summarized in Table 1. At the lower boundary the horizontal winds are zero

(no-slip conditions) and the vertical wind is zero to conserve total mass and energy. At the upper and lower boundaries the5

vertical derivative of density is zero. For the equations to have the capability to support hydrostatic balance, Eq. (19) implies

that b′ should be zero at the vertical boundaries. At the upper boundary the horizontal winds are chosen to maintain consistency

with the boundary conditions of p̃′ and b′ through thermal wind balance and the vertical wind is again zero to conserve total

mass and energy.

3.3 Numerical differentiation and integration10

3.3.1 Time integration scheme

The time integration is evaluated using a split explicit, forward-backward scheme (Cullen and Davies, 1991) and here we give

a description of this scheme applied to Eqs. (15). The forward-backward scheme operates over a time-step ∆t and comprises

two stages: an adjustment stage and an advection stage.

Adjustment stage15

The adjustment stage operates over a sub-timestep δt, where δt= δt/n and n is typically a small positive integer (in this

implementation n= 2). The adjustment stage contains two parts: the forward part and the backward part. Let t be the time at

the start of the ∆t timestep and let ti be shorthand for t+ iδt. The following is a description of the ith sub-timestep.

In the forward part of the forward-backward scheme, the momentum and thermodynamic equations are evaluated omitting

the advective terms. The u and v equations are considered simultaneously to find the adjustment due to the Coriolis and pressure20

gradient terms. Then the w-momentum and b′ equations are dealt with simultaneously to find the adjustment due to buoyancy,

11
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pressure gradient and vertical wind. The forward part of the adjustment stage gives an implicit approximation to u, v, w and b′

at the next sub-timestep.

The equations for u Eq. (15a) and v Eq. (15b), omitting the advective terms are discretized as

u(ti+1) = u(ti)− δtC
∂ρ̃′(ti)
∂x

+
δtf

2
(v(ti) + v(ti+1)) , (31a)

v(ti+1) = v(ti)−
δtf

2
(u(ti) +u(ti+1)) . (31b)5

Solving Eqs. (31) for u(ti+1) and v(ti+1) gives

u(ti+1) =
βf
αf
u(ti)−

δtC

αf

∂ρ̃′(ti)
∂x

+
δtf

αf
v(ti), (32a)

v(ti+1) =
βf
αf
v(ti)−

δtf

αf
u(ti) +

δt2Cf

2αf
∂ρ̃′(ti)
∂x

, (32b)

where αf and βf are defined by

αf = 1 +
δt2f2

4
, and βf = 1− δt2f2

4
. (33)10

The equations for w Eq. (15c) and b′ Eq. (15e) omitting advective terms are discretized as

w(ti+1) = w(ti)− δtC
∂ρ̃′(ti)
∂z

+
δt

2
(b′(ti) + b′(ti+1)) , (34a)

b′(ti+1) = b′(ti)−
δtA2

2
(w(ti) +w(ti+1)) . (34b)

Solving Eqs. (34) for w(ti+1) and b′(ti+1) gives

w(ti+1) =
βA
αA

w(ti)−
δtC

αA

∂ρ̃′(ti)
∂z

+
δt

αA
b′(ti), (35a)15

b′(ti+1) =
βA
αA

b′(ti)−
δtA2

αA
w(ti) +

δt2CA2

2αA
∂ρ̃′(ti)
∂z

, (35b)

where αA and βA are defined by

αA = 1 +
δt2A2

4
, and βA = 1− δt2A2

4
. (36)

Equations (32a), (32b), (35a) and (35b) are the discretized forms of the split-explicit equations that are evaluated in the forward

part of the forward-backward scheme in the adjustment stage. The spatial derivatives are left in continuous form, but are20

discretized in the numerics using standard centred finite-differences.

In the backward part of the forward-backward scheme the continuity equation (15d) is evaluated using the wind and buoyancy

data calculated in the forward part, i.e.

ρ̃′(ti+1) = ρ̃′(ti)− δtB (ρ̃(ti)∇ ·u(ti+1) + u(ti+1) · ∇ρ̃(ti)) . (37)

The term in brackets on the right hand side is equal to∇·(ρ̃(ti)u(ti+1)), but has been expanded in Eq. (37) to allow the second25

term to use the upstream gradient of ρ̃(ti). After integration of n steps over the full ∆t the value of p̃′ is known and the values

of the variables u, v, w and b′ are known but without the effect of advection.

12
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Advection stage

The advection stage advects the fields u, v, w and b′ calculated in the adjustment stage using the sub-timestep-averaged winds

ū and w̄, which are taken to be valid over the full ∆t. Let φ be any of u, v, w or b′, then the advection step is given by

φ(t+ ∆t) = φ(t)−∆tBū · ∇φ(t), (38)

where ū = (ū, w̄)T. As with Eq. (37), the upwind gradient of φ is computed in Eq. (38). Note that for the tracer advection,5

φ= q, Eq. (38) is used with B = 1.

Overall properties

The spatial derivatives evaluated by the forward-upstream scheme are first order accurate (Press et al., 2007) and the time

integration which utilises a split-explicit and forward-backward scheme is also first-order accurate (Ames, 1958; Gadd, 1978).

The stability of the forward-backward scheme increases the time-steps which are permitted by the CFL criterion (Ames,10

1958). The split-explicit scheme has been used in early implementations of the UK Met Office’s NWP model due to its ability

to conserve mass (Gadd, 1978; Cullen and Davies, 1991).

4 Linear analysis of the “ABC model”

In this section a normal mode analysis of the toy model equations is performed. This follows a similar procedure used for

the shallow water equations in Section 6.4 of Daley (1991) and in Section 2.4 of Cullen (2006). The linear analysis allows15

us to probe the dispersion relations and the balanced/unbalanced character of the linear modes. For simplicity this analysis is

performed on a continuous domain of size Lx and Lz .

4.1 Linearisation

The non-linear model equations (15) are linearized about the reference state and a state of rest. It is convenient to write the

model equations in terms of velocity potential, χ, and streamfunction, ψ. The Helmholtz theorem gives: u= ∂χ/∂x and20

v = ∂ψ/∂x. The linearized model equations are then:

∂

∂t

∂2χ

∂x2
+C

∂2ρ̃′

∂x2
− f ∂

2ψ

∂x2
= 0, (39a)

∂

∂t

∂2ψ

∂x2
+ f

∂2χ

∂x2
= 0, (39b)

∂w

∂t
+C

∂ρ̃′

∂z
− b′ = 0, (39c)

∂ρ̃′

∂t
+B

∂2χ

∂x2
+B

∂w

∂z
= 0, (39d)25

∂b′

∂t
+A2w = 0, (39e)
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Now take the following functional dependence for a particular dimensionless frequency σ, horizontal wavenumber k and

vertical wavenumber m:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ(x,z, t)

ψ(x,z, t)

w(x,z, t)

ρ̃′(x,z, t)

b′(x,z, t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i χ̂

1 ψ̂

k/Lx ŵ

k/Lx
√
B/C ˆ̃ρ′

−iAk/Lx b̂′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

exp
[
i

{(
kx

Lx

)
+
(
mz

Lz

)
−σt

}]
. (40)

Substituting Eq. (40) into Eq. (39) and expressing the resulting set of equations in matrix form gives:

(L−σI)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ̂

ψ̂

ŵ

ˆ̃ρ′

b̂′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (41)5

where

L =




0 f 0 −k
√
BC
Lx

0

f 0 0 0 0

0 0 0 m
√
BC

Lz
A

−k
√
BC
Lx

0 m
√
BC

Lz
0 0

0 0 A 0 0




. (42)

This is an eigenvalue equation where L is a real and symmetric matrix (due to the choice of factors in Eq. (40)), and so will

have real eigenvalues. For each distinct choice of horizontal and vertical wavenumber (k,m), L has five eigenvalues, denoted

σR, σg, σg′ , σa, and σa′ where10

σR = 0, σg =−σg′ , and σa =−σa′ . (43)

The three distinct modes are the Rossby-like mode (subscript “R”), two inertia gravity modes (“g” and “g′”), and two acoustic

modes (“a” and “a′”). The algebraic form of the R mode is simple and is discussed in Sect. 4.2 below, but the forms of

the remaining modes are very complicated and so are considered only firstly in ’pure’ forms (Sects. 4.3 and 4.4) and then

numerically in the wave speed analysis (Sect. 4.5).15
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4.2 The Rossby-like mode

The normalized R mode is



χ̂

ψ̂

ŵ

ˆ̃ρ′

b̂′




=
1√
K




0

−Af k
m
Lz

Lx

0

− ALz

m
√
BC

1




, (44)

where K = (ALz[kBC +Lxf
2] +L2

xf
2m2C)/(L2

xf
2m2BC). This mode, as we shall show, supports geostrophic balance

defined by Eqs. (18a) and (18b). Firstly, relation Eq. (18a) in terms of the variables defined in Eq. (40) and for wavenumber k5

is

k

Lx

√
BC ˆ̃ρ′ = fψ̂, (45)

which is consistent with Eq. (44). Secondly, and trivially, relation (18b) is equivalent to ∂χ/∂x= 0, which is also consistent

with Eq. (44). There is no vertical wind associated with the R mode. There remains a buoyancy component for this mode to

support hydrostatic balance defined by Eq. (19). Relation (19) in terms of the variables defined in Eq. (40) and for wavenumbers10

k,m is

m
√
BC

Lz
ˆ̃ρ′ =−Ab̂′, (46)

which is consistent with Eq. (44).

4.3 The pure gravity waves

Following Kalnay (2002) pure gravity waves can be investigated by neglecting rotation and pressure perturbations (by Eq. (13)15

density perturbations are therefore neglected too). We anticipate that the gravity waves will be sensitive to A given that A is

related to the static stability parameter N (the Brunt-Väisälä frequency). Under these conditions, Eq. (42) has two eigenvalues,

σg =A and σg′ =−A, representing the pure gravity wave frequencies. In the limit of A= 0, no gravity waves are supported.

4.4 The pure acoustic waves

Following Kalnay (2002) pure acoustic waves can be investigated by neglecting rotation, gravitation, and stratification (i.e. set20

f = 0, g = 0, A2 = 0, and b′ = 0). Under these conditions, Eq. (42) has three eigenvalues, σ = 0 (which is an incompressible

mode that does not interest us here), σg =
√
BC

√
(k/Lx)2 + (m/Lz)2 and σg′ =−σg , the latter two representing the pure

acoustic wave frequencies. The pure acoustic wave speed in the horizontal (e.g.) is ∂σg/∂( k
Lx

), which becomes
√
BC in the

scall-scale limit. In the limit that B = 0 or C = 0, the system becomes incompressible and no acoustic waves are supported.

15
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4.5 Wave speed analysis experiments

In sections 4.3 and 4.4, we demonstrated how the pure gravity and acoustic waves depend upon the parametersA,B andC. The

analysis there was simplified (by explicitly neglecting processes that are not directy associated with gravity and acoustic waves

respectively) in order to derive analytical expressions. Here we look at the gravity and acoustic wave speeds in a more detailed

way without making the approximations made before. These reveal the normal modes of the linearised system Eqs. (39) (see5

e.g. Thuburn et al. (2002)), which now include rotation, gravitation, and stratification. We show how the wavespeeds behave

in the linearised system, and as a function of wavenumber, and of parameter values. To reduce the stiffness of the system we

would like the speeds of the gravity and acoustic modes to have value ∼ U or ∼ V , the characteristic speeds of the horizontal

wind components, and so the results of this subsection are important for choosing parameter values for suitable model runs.

The standard values of the parameters that we use for this section are: A= 0.02 s−1 (estimated from a typical value of the10

Brunt-Väisälä frequency), B = 1.0, C = 105 m2s−2 (estimated from initialising data), and f = 10−4 s−1, and for simplicity,

periodicity is assumed in the x and z directions.

Figure 2 shows the horizontal group speeds for the gravity (cg = ∂σg/∂k, panel a) and acoustic (ca = ∂σa/∂k, panel b)

waves as a function of the integer index, nx (characterising the horizontal wavenumber k = 2nxπ/Lx) for a range of parameter

values (the integer index, nz , characterising the vertical wavenumber m= 2nzπ/Lz , is fixed at nz = 3). Note that these k and15

m are slightly different from those used in Sects. 4.1 to 4.4.

Gravity waves in the approximated system are found to be stationary (Sect. 4.3), but gravity waves in the full system are not,

see Fig. 2a. There is a strong sensitivity of cg to A (larger A, faster gravity waves), and the fastest gravity waves have large

horizontal, and large vertical scales (small nx and nz). The sensitivity of cg to BC over the values tested is weak, but it is

detectable at large vertical scales and over large and intermediate horizontal scales (not shown). In fact, cg increases with BC20

at large horizontal scales, but decreases with BC at intermediate horizontal scales (nx ∼ 75), but, as stated above, this effect

is very weak.

Acoustic waves in this system have different characteristics to the gravity waves in many respects. Acoustic waves are

generally much faster, but their speed may be controlled via the strong sensitivity of ca to BC, and the fastest acoustic waves

have small horizontal, and small vertical scales (large nx and nz), see Fig 2b. It is at these small scales that the acoustic waves25

saturate to the value
√
BC as found in Sect. 4.4. The sensitivity of ca to A is weak for the smaller values of A tested, but

moderate for the largest value of A tested (not shown).

The ability of the parameters A, B and C to change the speed of both the horizontal gravity and acoustic waves has been

demonstrated in Fig. 2. The buoyancy frequency parameter A, primarily controls the gravity waves, and the product BC

primarily controls the acoustic waves. The vertical gravity and acoustic wave speeds respond in a similar way to the parameters30

as the horizontal waves (not shown). In addition to modifying the acoustic wave speeds, B and C have other, separate effects –

B slows advection round the domain, and C influences the hydrostatic and geostrophic balance relationships (see section 2.2).

It is permissible to alter the value of only one or any combination of these parameters depending on the required result. These

results are used in the next section to help choose suitable parameter values.
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Figure 2. Panel (a) sensitivity of the horizontal gravity wave group speed to the tunable parameter A (in s−1), where BC = 105 m2s−2.

Panel (b) sensitivity of the horizontal acoustic wave group speed to BC (in m2s−2), where A= 0.02 s−1. In both panels f = 10−4 s−1 and

the vertical wavenumber index is nz = 3.

4.6 Reference parameters

In this section some desired dynamical characteristics that are seen in the real atmosphere are demonstrated in this simplified

setup. It is required that the model mimics the multi-scale behaviour of the real atmosphere, i.e. displays hydrostatic and

geostrophic balance on the large-scale while permitting imbalance and intermittent convective-like behaviour on the small-

scale, while allowing an explicit solver. The results from the linear analysis of Sect. 4.5 gives a taste of how the wave speeds5

depend onA,B andC, but the values that we settle on as reference values areA= 2×10−2s−1,B = 10−2 andC = 104m2s−2.

Figure 3a shows the frequencies, and the magnitudes of the horizontal and vertical wave speeds for the gravity and acoustic

waves for these reference parameters. The acoustic wave frequencies in panel a are always higher than those of the gravity

waves (the latter, have an upper bound of A). The frequencies of the gravity and acoustic waves for nz = 3 (left) are of the

same order, but for the extreme case of nz = 59 (right), the acoustic wave frequencies have much higher values by more than10

an order of magnitude. These are classic dispersion curves for these modes in the atmosphere (e.g. Fig. 14.9 of Salby (1996))

and they allow us to estimate that the highest frequency that the model will encounter is ∼ 0.25 s−1 (4 s period, from the right

panel of Fig. 3a). This allows us to set the time steps of our model (Sect. 3.3.1), which we chose as ∆t= 1 s and δt= 0.5 s.

The ability to control speeds in order to make the gravity and acoustic wave speeds comparable is more effective. Comparing,

for instance, Figs. 3b and 2 shows how the gravity and acoustic wave speeds have been reduced to comparable values (a maxi-15

mum of 10ms−1 with the reference parameters, compared with a maximum of 1000ms−1 for the parameters tested for Fig. 2).

The speed of 10ms−1 applies in the horizontal (Fig. 3b) and in the vertical (Fig. 3c). Given that the horizontal and vertical grid

spacings are 1500m and 250m respectively, and ∆t= 1s, the Courant number is Co= 1×(10/1500 + 10/1500 + 10/250)≈
0.05, which is sufficiently small.
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Figure 3. Gravity and acoustic wave properties for the reference parameters A= 2× 10−2s−1, B = 10−2 and C = 104m2s−2. The panels

are: frequencies (a), and the magnitudes of the horizontal (b) and vertical (c) wave speeds. In (a) and (b) values are a function of horizontal

wavenumber, nx, and the left column is for nz = 3, and the right column is for nz = 59. In (c) values are a function of vertical wavenumber,

nz , and the left column is for nx = 10, and the right column is for nx = 350.
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Figure 4. Model integration of the density perturbation ρ̃′, and horizontal wind vectors. The initial conditions are zero for all variables

apart from ρ̃′, which takes the form of a Gaussian with an amplitude 0.01, a horizontal length-scale of 90 km, and a vertical length-scale

of 700m. The Gaussian is positioned in the middle of the domain. Parameters have the reference values A= 2× 10−2 s−1, B = 10−2 and

C = 104 m2s−2. Note that the y-component of each wind arrow is the meridional, not the vertical, component of the wind. At six hours the

maximum magnitude of the u-wind is ∼ 1.4ms−1 and the maximum value of the v-wind is ∼ 3.6ms−1.

5 “ABC model” integration results

5.1 Idealised initial conditions

The model was first initialised with idealised initial conditions to ensure that the model behaves reasonably with the reference

parameter values. In this run the initial conditions are zero for all variables apart from ρ̃′, which takes the form of the Gaussian

described in the caption (panel a). The ρ̃′ and (u,v) fields for up to six hours are shown in Fig. 4. In the real atmosphere such5

a positive density perturbation induces anticyclonic motion as geostrophic adjustment develops, and a similar response is seen

in the toy model (the ‘vertical’ components of the arrows represent meridional wind, which is out of the page on the right

and into the page on the left). After three hours (panel b), the horizontal wind is significantly divergent indicating that the ρ̃′

perturbation is being dissipated by gravity waves which act smooth-out the initial perturbation, whose maximum value has

reduced to about a third of its original value. After six hours (panel c) the flow is mainly rotational (there is a weak convergent10

flow near the centre of the domain) and the ρ̃′ perturbation has moved to the boundaries.

Figure 4 can be used to verify the wave speeds determined by linear analysis. Consider Fig. 4b, where the edge of the

feature has propagated approximately 80 km over the three hours. This gives an approximate horizontal gravity wave speed of

∼ 7 ms−1, which is around the maximum horizontal gravity wave speed found from the linear analysis in Fig. 3b.

5.2 Intermittent convection-like behaviour15

Convective motion in the atmosphere is difficult to model and to assimilate as it is often intermittent and associated with small-

scale divergence. In the real atmosphere it is usually driven by latent heating, but our simple model is dry and so we rely on

other processes such as wave breaking to drive such motion. Intermittent convection-like motion is a desirable property of our
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Figure 5. Model integration of the vertical wind w up to six hours. The initial conditions in panel a are derived from an output of the UM as

described in the text (Sect. 5.2). Parameters have the reference values A= 2×10−2 s−1, B = 10−2 and C = 104 m2s−2. At the initial time

the maximum magnitude of w is ∼ 0.6ms−1 and at six hours it is ∼ 0.16ms−1.

model in order for it to have a significant unbalanced component on the small-scale, and hence be a useful system to study

convective-scale data assimilation.

An obvious indication of the presence of convection is vertical motion and so we look at the w field from an integration of

the model firstly with the reference parameters. The initial conditions of the model were created from the following procedure.

– Take values of u, v from a latitude/height slice of an output the Met Office’s convective-scale (1.5km grid) UM (this is5

the same model used by the Met Office during the 2012 Olympics (Golding et al., 2014), and has the same horizontal

resolution and grid staggering as our model). These fields are adjusted to eliminate the discontinuity imposed by the

periodic boundary conditions1.

– Calculate ρ̃′ by integrating the geostrophic balance equation (18a) on each level.

– Calculate b′ from the hydrostatic balance equation (19) for each horizontal location.10

– Calculate w from the continuity equation for zero three-dimensional divergence.

Each variable is then incremented (independently for each level) so that its horizontal mean is zero, and finally ρ̃ is set as

ρ̃= 1 + ρ̃′. The model’s initial conditions are then nearly balanced (the incrementing will disrupt the hydrostatic balance

slightly), and unbalanced motion (including convection-like behaviour) then develops.

Figure 5 shows w over a six hour integration of the model using the reference parameters. The initial conditions in panel a15

show vertical winds that are of relatively small-scale in the horizontal, with elongated structures over the lowest 5 km or so in

the middle of the domain. These are of course not generated by this model, but are derived from the UM data. An indication

1This is done by incrementing the left half of the domain by the amount −((∆− δ)/2)exp
[
−(x/`)2

]
, and the right half by

+((∆− δ)/2)exp
[
−((x−Lx)/`)2

]
, where x is the horizontal distance from the western boundary, `= 150km is the relaxation distance, ∆ is the

size of the discontinuity in u or v (i.e. the magnitude of the difference in u or v between the western and eastern boundaries in the raw UM data), and δ is the

magnitude of a typical increment of u or v between neighbouring grid-boxes. This procedure is performed separately for each vertical level.
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of the kind of behaviour that this model is capable of generating are shown in panels b and c, for three and six hours into the

forecast respectively. The most striking aspect of the w field at three and six hours is that the scales of the features are even

smaller than those at t= 0. Additionally the magnitudes of w are smaller with very small regions of moderate values especially

in the eastern part of the domain. The similarity in these qualitative aspects of panels b and c shows that this kind of behaviour

is not merely transient. We regard these plots as indicators of intermittent convection-like behaviour, which is studied further5

below.

5.3 Systematic exploration of model behaviour over parameter space

In order to test novel approaches to data assimilation it is desirable to run the model in different flow regimes, which we

investigate by varying the parameters A, B, and C systematically, each over a three-hour model run. We are particularly

interested in understanding how the parameter values affect the degree of convection and of imbalance, and we start this10

investigation by introducing the diagnostics for the reference parameters.

5.3.1 Reference parameters

We settle on four kinds of diagnostic for each parameter set, which are shown in Fig. 6 for the reference parameters. Panel

a is the vertical wind speed, and panel b is the effective buoyancy, bueff . The latter is defined as the (non-constant) stability

bueff = ∂ (b0(z) + b′(x,z))/∂z, where ∂b0(z)/∂z =A2. A positive (negative) effective stability indicates statically (un)stable15

air, so negative and small positive values suggest convective activity. Panel c is the distribution of tracers after three hours. The

tracers were initialised at t= 0 on a grid of 20 points distributed throughout the domain (dark regions) and the distribution after

three hours provides an indication of the history of the wind behaviour. These fields are labeled with the minimum, maximum,

and root-mean-squared values. Panel d indicates the degree of relative geostrophic imbalance (black lines and left scale) and

hydrostatic imbalance (grey lines and right scale) averaged over the domain, at half-hour intervals over the integration. These20

quantities are found respectively using Eq. (18a) and Eq. (19) to give:

geo. imbal = rms
[(
C
∂ρ̃′

∂x
− fv

)
/(rms(C∂ρ̃′/∂x) + rms(fv))

]
, (47a)

hydro. imbal = rms
[(
C
∂ρ̃′

∂z
− b′

)
/(rms(C∂ρ̃′/∂z) + rms(b′))

]
, (47b)

where rms indicates the root-mean-squared value of the quantity in brackets over the domain. The fields ρ̃′, v, and b′ are filtered

before computing these diagnostics by removing scales (i) below 100km (to give the solid lines in panel d), (ii) below 10km25

(to give the dashed lines), and (iii) below 1km (i.e. unfiltered, to give the dotted lines). This gives us an indication of how the

degree of imbalance is affected by scale.

There are variations of upward and downward vertical motion over the domain (Fig. 6a), but there are no regions that are

specifically more convectively active than others. The bueff diagnostic is fairly uniformly small over most of the domain (panel

b) but does have more variability in the uppermost 5 km of the domain where it is weakly negative in a thin layer at 14 km30
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Figure 6. Selection of diagnostic fields for the reference parameters A= 0.02 s−1, B = 0.01, C = 10000 m2s−2. Panels (a-c) are after a

three-hour forecast, except for the dark regions in (c), which indicate the tracer distribution at t= 0. In (d) the imbalances are shown as a

function of forecast lead time and horizontal scale. The black lines (and the left scale) are for geostrophic imbalance, and the grey lines (and

the right scale) are for hydrostatic imbalance. The Rossby number is estimated as Ro∼ 0.06.

22

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2017-68, 2017
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



0 2000 4000 6000 8000 10000 12000
time (s)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

T
o
ta

l 
e
n
e
rg

y
 (
E
/E

0
)

Relative total energy

Ref
A-
B-
C-
A+
B+
C+
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ways that the parameters were changed. The labels describe which parameter is modified in a model run and the + (-) indicates that it has

been increased (decreased) by an order of magnitude from its reference value (with the remaining parameters unchanged).

(sandwiched between two strongly stable layers) during this snapshot. There is a small amount of disturbance of the tracer field

after 3 hours (panel c).

The Rossby number is estimated to be small (Ro∼ 0.06), and the geostrophic imbalance is found to be moderate for the

reference run (panel d), which stabilises to around 0.45 when only large scales are present, but higher, to around 0.7 to 0.8 when

smaller scales are included (see the dark lines and the left-hand scale on panel d). The hydrostatic imbalance also increases as5

the scales shorten (see the light lines and the right-hand scale on panel d), but is much lower than the geostrophic imbalance

(0.025 for the smallest scales). By estimating the magnitudes and length-scales of the fields in this run, the scale analysis in

Sect. 2.2 does show that the last two terms in Eq. (17a) and in Eq. (17c) to be much larger than the other terms by about three

and six orders of magnitude respectively.

Energy in the continuous system of equations was proven to be exactly conserved in Sect. 2.3, but the numerical integration10

scheme introduces errors which will lead to non-conservation. Fig. 7 (solid line) shows that these errors do lead to a small loss

of energy over the three hours (less than half of a percent of the initial energy), which we assume is acceptable.

5.3.2 Changes to the parameter A

Recall that the parameterA controls the gravity wave frequency and speed. In this section two three-hour integrations are done:

one with A decreased by an order of magnitude (A-, Fig. 8, left panels), and one with A increased by an order of magnitude15

(A+, Fig. 8, right panels).

A- appears to result in more active w values than in the reference run, and A+ appears to have little effect on w (panel a).

The effective buoyancy (panel b) has more structure than in the reference run, with bands of lowered bueff appearing in A-

(with patches of slightly negative bueff in the lower part of the domain which are too small to show as contours in the left plot

23

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2017-68, 2017
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



of panel b), while A+ has no negative values at all. The increased vertical motion in A- is seen in the tracer fields (panel c),

which have been transported more vertically in A- and slightly less vertically in A+ than the reference run. These results make

physical sense given that A controls the static stability of the fluid.

The geostrophic and hydrostatic imbalances for A- and the geostrophic imbalances for A+ (panel d) are similar to the

reference run (slightly lower overall for A- and slightly higher for A+), but the hydrostatic imbalance diagnostic is up to four5

times higher for A+, although the imbalance is still small. These findings seem counter-intuitive (e.g. geostrophic imbalance

may in fact be expected to increase as A is decreased as the separation between gravity and advective frequencies decreases).

The result may be due to the rather arbitrary way that imbalance is defined in (47), although the computed Rossby number is

found to remain around the same level in A- and A+ as the reference run2. The less statically stable A- run results in more

numerical loss of energy than the reference run (4% loss over the three hours) (Fig. 7) and the more stable A+ run results in10

less loss of energy (0.2% loss).

5.3.3 Changes to the parameter B

Recall that the parameter B (with C) controls the acoustic wave speed. Two further three-hour integrations are done: one with

B decreased by an order of magnitude (B-, Fig. 9, left panels), and one with B increased by an order of magnitude (B-, Fig. 9,

right panels).15

B- and B+ result in slightly more active w values, but little change to the structure of the w field (panel a). B+ does

have more vertical motion in the root-mean-squared values than both the reference and B-. The effective buoyancy is largely

unaffected by the changes in B (panel b). A similar story applies to the tracers for B-, but the tracers for B+ do show increased

vertical transport (panel c), which is consistent with the larger root-mean-squared w for B+. The geostrophic and hydrostatic

imbalances are slightly less for B-, but higher for B+, although the values remain small. The Rossby number is small for both20

runs (Ro∼ 0.07 for B-, but elevated Ro∼ 0.11 for B+). One would normally assume that a faster gravity wave speed, as in

the B+ run, would result in less imbalance, but this is not the case here. The scale analysis in Sect. 2.2 reveals though that it is

the product BRo, rather than just Ro that is the quantity that scales terms that knock the system out of balance, and BRo is

smaller (larger) in B- (B+) than in the reference run. Changing the B parameter has a dramatic effect on errors in the energy

conservation (Fig. 7), where B- produces the most conserved energy conservation of all experiments (the numerical loss of25

energy is indistinguishable from a perfectly conservative scheme in Fig. 7), but B+ results in one of the most erroneous runs

(an eight percent loss in energy over three hours).

5.3.4 Changes to the parameter C

Recall that C is the parameter that conventionally controls the acoustic wave speed (in this system it controls it jointly with B).

Two further three-hour integrations are done: one with C decreased by an order of magnitude (C-), and one with C increased30

2Lowering A by a further order of magnitude from A- (i.e. A= 0002 s−1, results not shown) does double the computed Rossby number though, which is

more in line with expectation.
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Figure 8. As Fig. 6 but for the modified A parameter: A= 0.002 s−1 (A-, left panels, Ro∼ 0.06), and A= 0.2 s−1 (A+, right panels,

Ro∼ 0.07). The remaining parameters are as for the reference run (B = 0.01, C = 10000 m2s−2).
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Figure 9. As Fig. 6 but for the modified B parameter: B = 0.001 (B-, left panels, Ro∼ 0.07), and B = 0.1 (B+, right panels, Ro∼ 0.11).

The remaining parameters are as for the reference run (A= 0.02s−1, C = 10000m2s−2).
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by an order of magnitude (C-). The initial conditions for C- and C+ each differ from those used before as the procedure used

to generate balanced initial conditions described in Sect. 5.2 from UM data depends on parameter C.

The C- and C+ results are not shown because they are virtually indistinguishable from the B- and B+ runs respectively

(including the relative balance results). There are two differences though. The first is that ρ̃′ is scaled by C−1 (when C is

decreased (increased) by an order of magnitude, ρ̃′ (not shown) is increased (decreased) by an order of magnitude compared5

to the B- (B+) runs, with the field structures remaining the same). This is seen in the scale analysis equations (17), where C

and P ′ (the characteristic value of ρ̃′) always appear together as a product. This is how the C- and C+ runs maintain the same

level of geostrophic and hydrostatic balances as the B- and B+ runs respectively. The second difference is seen in the numerical

scheme’s energy loss (Fig. 7). The B+ run loses energy significantly (eight percent), but the C+ run loses less (one percent).

This is another beneficial effect of introducing the B parameter (the same value of a particular desired acoustic wave speed10
√
BC can be achieved by decreasing B and increasing C).

6 Conclusions

A set of simplified energy conserving equations have been derived which allow control of the gravity and acoustic wave

characteristics to be controlled with three parameters, A (the pure gravity wave frequency), B (the modulation of the divergent

term in the continuity equation, and of the advection terms in other equations), and C (defining the compressibility of the15

system). The term
√
BC is the pure small-scale acoustic wave speed. The introduction of B allows the acoustic wave speed

to be reduced so that it is comparable to the gravity wave speed, hence allowing explicit integration schemes to be used to

approximate the solution of the equation set (such as the split explicit, forward-backward scheme used here).

The linearised equations support a zero frequency Rossby-like mode and dispersive gravity and acoustic modes. The system

is shown to behave in a way that reflects aspects of the atmosphere, namely geostrophic adjustment, convective behaviour20

influenced by buoyancy, and scale-dependent geostrophic and hydrostatic imbalances. The model has no water vapour, which

simplifies the scheme considerable (although water vapour and moist processes could be added if required). The energy is not

perfectly conserved with this scheme, although numerical energy loss is assumed to be acceptable in most runs.

The purpose of developing this model is to facilitate research into ways of modelling the background error covariance matrix

(B) used in convective-scale data assimilation. The B-matrix is normally modelled with guidance from large-scale dynamics,25

namely that geostrophic balance is dominant, and hydrostatic balance is exact. These assumptions are probably not applicable

at convective-scales (as shown by Berre (2000); Bannister et al. (2011); Vetra-Carvalho et al. (2012); Bannister (2015), and as

we have seen here, where more imbalance is present at the smaller scales). A key idea which will be explored in a forthcoming

paper is to use the normal mode structure of the linearised equations to define the B-matrix rather than relying on imposed

balances. It is hoped that this will have physically appropriate structures and the correct degree of balance at different scales30

(preliminary work has been done by Petrie (2012)).

27

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2017-68, 2017
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 25 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



7 Code and data availability

The model is written in Fortran-90, and the plotting code is written in python. This software is open-source and freely available

on a Git Hub repository (Petrie et al., 2017). The initial conditions used to start the model runs studied in this paper is available

from the same repository.
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